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Natural convection in a cube of fluid-saturated porous medium heated from below
and cooled from the top is studied numerically using a non-Darcy flow model. All
vertical sidewalls are considered to be impermeable and adiabatic. The evolution of
the various flow patterns is investigated from onset up to a Rayleigh number of 1000
where irregularly fluctuating convection prevails. New flow patterns have been found
to exist in addition to those mentioned in the previous studies. In the present study,
a total of ten steady flow patterns have been identified, of which five show oscillatory
behaviour in some Rayleigh-number range. The results are presented in terms of
average Nusselt number curves consisting of the solution branches of the convective
patterns. The convective patterns are classified in terms of their symmetry properties,
and the symmetries broken or gained during bifurcations from one flow structure to
the other are identified.

1. Introduction
Convective flow in porous media has been investigated extensively owing to its

relevance to practical problems encountered in industrial applications and geological
systems. There are numerous studies on the evolution of the convective patterns
from stationary state to steady flow and then to unsteady chaotic regime in a two-
dimensional porous cavity heated from below. The studies of Horne & O’Sullivan
(1974), Caltagirone (1975), Kimura, Schubert & Straus (1987), Riley & Winters (1991),
Schubert & Straus (1982), Graham & Steen (1994) are just a few examples of two-
dimensional work on a fluid-saturated porous cavity heated from below and cooled
from the top, with adiabatic sidewalls. On the other hand, studies on three-dimensional
thermal convection in porous media are limited.

According to linear theory, convection begins in a cube of porous medium heated
from below and cooled at the top, with insulated vertical sides, when the Rayleigh
number Ra∗ equals 4π2 (Beck 1972). This is the value obtained by Lapwood (1948) for
a horizontally unbounded fluid layer in a porous medium heated from below. In a cu-
bic box, a single-roll two-dimensional flow pattern forms when convection first starts.
A three-dimensional flow pattern, having two diagonal rolls, forms for Ra∗ > 4.5π2.
This pattern was referred to as the (1, 1, 1) mode (Kimura, Schubert & Straus 1989)
as it involves coupled disturbances in all three orthogonal directions. Steen (1983)
has shown that the (1, 1, 1) mode is unstable in the range 4.5π2 � Ra∗ � 4.87π2. In
addition to the two-dimensional roll cell structure, in the slightly supercritical regime,
Zebib & Kassoy (1978) found a coexisting three-dimensional flow pattern, which is
formed by the superposition of two horizontal orthogonal two-dimensional rolls.

One of the earliest attempts to investigate the three-dimensional convection in a
fluid-saturated porous cube was given by Holst & Aziz (1972) for Ra∗ = 60 and 120



394 I. Sezai

using the finite-difference solution of the governing equations. They found that both
two- and three-dimensional convection patterns can coexist. This is verified by Horne
(1979), who used finite differences up to Ra∗ =400, and by Straus & Schubert (1979),
who used a Galerkin technique to study steady convection in a cube for Ra∗ =150
and later extended the calculations for Rayleigh numbers up to 500 (Schubert &
Straus 1979). By means of an analytic eigenfunction-expansion technique, Steen
(1983) obtained the regions within the space of the initial conditions which lead to
one or other of the competing states and, thereby, the probability that a certain
pattern will be realized.

Using a numerical scheme based on the pseudo-spectral method, Kimura et al.
(1989) determined that the so-called (1, 1, 1) mode becomes oscillatory at a Rayleigh
number of 575. Graham & Steen (1991) set this value at Ra∗ = 584. Both studies report
that the flow pattern becomes less symmetric prior to the onset of time dependence.
Stamps, Arpaci & Clark (1990) found that regularly fluctuating convection begins at
Ra∗ between 550 and 560 from steady three-dimensional flow.

It should be noted that all the above studies are based on the Darcy law
assumption where the convection terms in the momentum equations are neglected. In
these studies, slip boundary conditions were used, which admit no shear stress at the
solid walls. This is valid in low-permeability porous media where the strong viscous
dissipation through the fluid eliminates the effects of inertia and the formation of
a viscous boundary layer. In that case, the slip boundary conditions (no shear) at
the walls become the appropriate boundary conditions. When the permeability of
the porous medium is high, the drag effect due to the solid matrix and the effect
of viscous stresses near the solid walls may become important. For this reason,
non-Darcy effects have been included in the present model, where the drag effect is
accounted for by including the Forcheimer term. The effect of the wall shear stresses
is included through the use of the Brinkman term and no-slip boundary conditions
are used at the solid walls. Even though the contribution of the advection terms
is small in porous media, they are included in the model to handle all possible
situations. At low Ra∗ values, the results of the present model generally agree with
previous results found under the assumption of Darcy law and zero shear stress at the
solid boundaries. However, for Ra∗ > 130, new flow patterns have been found to exist
in addition to those mentioned in the previous studies. In the present study, a total of
ten steady-flow patterns have been identified of which five show oscillatory behaviour
in some Rayleigh-number range. However, the oscillatory convection of only the
(1, 1, 1) pattern has been identified in all previous studies of three-dimensional
convection in a porous cube. In the present study, the (1, 1, 1) mode, hereinafter
referred to as S3, shows no oscillatory behaviour. At Ra∗ = 610, it bifurcates either
into a steady symmetric two-roll pattern, or into a non-symmetric oscillatory pattern.

In the present study, the existence of multiple flow patterns in a fluid-saturated
porous cube heated from below and cooled from the top with insulated sidewalls,
has been investigated numerically using a non-Darcy model and no-slip boundary
conditions. The branches of solutions and bifurcations between the branches, have
been shown in a Nusselt number versus Rayleigh number diagram.

2. Mathematical formulation
All results are obtained for a fluid-saturated porous medium contained in a cube

(Lx = Ly =Lz = 1) heated from below and cooled from the top with insulated vertical
sides (figure 1). The bottom wall is at a uniform temperature Th, while the top wall
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Figure 1. Physical model and the coordinate system.

is at a uniform, but lower, temperature Tc. The porous medium is supposed to be
isotropic, homogeneous and in thermodynamic equilibrium with the fluid. All fluid
properties are assumed to be constant at a reference temperature Tc, except the density
in the driving term of the Navier–Stokes equations where it varies linearly with local
temperature. Under these conditions the dimensionless equations governing the flow
are (Nithiarasu, Seetharamu & Sundararajan 1997)

∇ · V = 0, (1)

1

ε

∂V

∂t
+

1

ε2
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Ra

Pr
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Da
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150
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, (2)

σ
∂θ

∂t
+ V · ∇θ =

1

Pr
λ∇2θ, (3)

where V, P and θ are dimensionless velocity vector, pressure and temperature defined
as V= υLz/ν, P = pL2

z/ρν2 and θ = (T − Tc)/(Th − Tc) and υ is the velocity vector, ν

is the kinematic viscosity of the fluid, p is the pressure, ρ is the density of the fluid
and T is the temperature. The length scales are non-dimensionalized by Lz. In (1)–(3),
Ra = (gβ(Th − Tc))L

3
z/να is the thermal Rayleigh number, Da = K/L2

z is the Darcy
number, Pr = ν/α is the Prandtl number, α = k/ρCp is the effective thermal diffusivity,
k is the effective thermal conductivity of the porous medium, ε is the porosity and K is
the permeability of the medium, β is the thermal expansion coefficient of the fluid, g is
the acceleration due to gravity, Cp is the specific heat, k is the unit vector in the vertical
direction. The parameter λ = km/kf is the ratio of thermal conductivities of the porous
medium and the fluid and σ = [ε(ρCp)f + (1 − ε)(ρCp)s]/(ρCp)f = (ρCp)m/(ρCp)f
is the heat capacity ratio. The second term on the right-hand side of the momentum
equation is the Brinkman term, which is included to account for the viscous stresses
adjacent to the enclosure walls. The parameter Λ = µe/µ is the ratio of the effective
viscosity in the Brinkman term to the fluid viscosity. The variation of Λ is not fully
understood and most of the works on non-Darcy formulation take Λ =1. The last term
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in the momentum equations is the Forchheimer term and represents the nonlinear drag
effect due to the solid matrix, where Ergun’s (1952) correlation is used with the total
velocity vector |V| =(U 2 +V 2 + W 2)0.5. Even though the contribution of the advection
terms is small, they are included in the model to handle all possible situations. The
inclusion of the advection terms is also necessary for smooth development of the
boundary layer near the enclosing walls (Vafai & Kim 1995).

The non-dimensional boundary conditions are:

U = V = W =
∂θ

∂X
= 0 for X = 0, 1, (4)

U = V = W =
∂θ

∂Y
= 0 for Y = 0, 1, (5)

U = V = W = 0, θ = 1, for Z = 0, (6)

U = V = W = 0, θ = 0, for Z = 1, (7)

where U , V , W are the x, y and z components of the velocity vector, respectively.

3. Method of solution
The governing equations are integrated directly in space and time and are discretized

by using the finite-volume method. However, unlike direct studies of stability and
multiplicity, which involve calculation of the Jacobian matrices, their determinants
and eigenvalues, the unstable solutions cannot be captured with the present method.
Staggered non-uniform grids are generated such that denser grid clustering is obtained
near the enclosure walls. The QUICK scheme (Leonard 1979) is used to calculate
the convection of a scalar term at a control volume face. A high-resolution flux
limiter known as ULTRA-SHARP (Leonard & Mokhtari 1990) is used to eliminate
oscillations in the high-gradient regions. The flux term is applied using a deferred
correction technique to reduce the stencil of the discrete equations. In this technique,
the flux value estimated by the QUICK scheme is written as the sum of the first-
order upwind term plus a correction term, which provides higher accuracy. The
first-order upwind term is treated implicitly, while the correction term is treated
explicitly and added to the source term. The discretized mass momentum and
energy equations are solved in a segregated approach using the standard SIMPLEC
algorithm (Van Doormaal & Raithby 1984). The momentum equations are solved
by using the iterative method SIP of Stone (1968), which is extended here to handle
three-dimensional problems. Conjugate gradient (Hackbusch 1994) and Bi-CGSTAB
iterative methods (Van der Vorst 1992) are used to solve the pressure correction and
energy equations, respectively. Iterations are continued until the second norm of the
residuals for all equations reduced below 10−6. No significant variations are observed
at this residual level.

A full approximation storage (FAS) full multigrid (FMG) method (Hortmann,
Peric & Scheurer 1990) is used to solve the problem. 82 × 82 × 82 control volumes
are used on the finest level for all cases except for the time-dependent solutions
where 42 × 42 × 42 control volumes are used. The time stepping has been realized
with the second-order fully implicit backward Euler scheme. The time step used was
between 0.01 and 0.0001, depending on the Rayleigh number used. By this means,
a minimum of 50 points in a period of oscillations is ensured in order to capture
the time-dependent solutions with reasonable accuracy. The maximum computer time
was about two days for the highly oscillatory high-Rayleigh-number cases, where a
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1.8 GHz PC was used. The computer code has been validated for various cases and
the results published elsewhere (Sezai & Mohamad 1999, 2000).

4. Results and discussion
Simulations were carried out starting with the diffusion solution and increasing the

porous thermal Rayleigh number Ra∗ = RaDa up to 1000. The results obtained from
the previous run were used as initial conditions for the next run. The Prandtl number
of the fluid is fixed at Pr = 10. The thermal properties of the solid porous matrix and
the fluid have been taken to be identical so that λ = 1 and σ = 1. The porosity of the
medium is assumed to be uniform throughout the domain and to remain constant
at ε = 0.6. The remaining properties of the porous medium are set as Λ = 1 and
Da = 10−5.

4.1. Symmetry properties

The solution of the problem has symmetries due to the invariance properties of the
governing equations with the boundary conditions used. It is essential to understand
the symmetries of the problem in order to classify the resulting flow patterns in terms
of symmetry groups. In this section we give a brief description of the symmetry groups
we shall encounter.

Rotational symmetry with respect to a vertical axis (parallel to the z-axis) at
X = 0.5, Y = 0.5 is donated by rz, which is the mapping consisting of a rotation
of 90◦ about that axis. Rotational symmetry r2

z is the mapping which consists of a
rotation of 180◦ about the same axis. Here, r2

z stands for rzrz which means applying
symmetry rz twice. Similarly, r3

z corresponds to a 270◦ rotation about the vertical
centreline. Rotational symmetries rx and ry refer to symmetries with respect to the
horizontal axis parallel to the x- and y-axis, respectively. Plane symmetries are denoted
by letter s. For example, plane symmetry sx is the mapping which produces the mirror
image of the flow and temperature fields about the X = 0.5 plane. Similarly sy , sd , sd ′

refer to plane symmetries about plane Y = 0.5, diagonal plane X = Y and diagonal
plane X = −Y , respectively.

The mathematical descriptions of the above symmetries are given in Sezai (2002)
and will not be repeated here. The simplest symmetry group is Z2 and refers to any
group having a single symmetry generated by a plane reflection or 180◦ rotation. For
example, the single plane reflections generate the symmetry groups, {e, sx}, {e, sy},
{e, sd}, {e, sd ′ }, where e is the identity. A rotation of a 180◦ about the vertical axis
generates the symmetry group {e, r2

z }. All these single symmetry groups are described
as group Z2. Applying the symmetry operations sx and sy consecutively is equivalent
to a 180◦ rotation about a vertical axis, that is, r2

z = sxsy . Similarly, application of
the symmetry operations sx and sd consecutively is equivalent to a 90◦ rotation, or
rz = sxsd . Applying the same plane symmetry operation twice results in the identity,
e that is, s2

x = s2
y = e. A rectangle has three symmetries: 180◦ rotation r2

z , as well as
plane symmetries sx and sy . This symmetry group is named D2 and defined by {e, sx ,
sy , r2

z }. The group D2 has three subgroups {e, sx}, {e, sy} and {e, r2
z }. Any two of

these Z2 subgroups can be combined to form D2 and is written as D2 = Z2 × Z2. A
square has four more symmetries: sd and sd ′ corresponding to reflection symmetries
about the two diagonals and rz and r3

z corresponding to 90◦ and 270◦ rotations about
the vertical axis. This symmetry group is named D4 and is defined by

{e, sx, sy, sd, sd ′, rz, r
2
z , r

3
z }.
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Structure Symmetry Symmetry group

S1 {e, sd} Z2

S2 {e, sx , τx} O(2)

S3 {e, sd , sd ′ , r2
z } D2

S4 {e, sx , sy , τy} Z2 × O2

S5 {e, sx , sy , sd , sd ′ , rz, r2
z , r3

z } D4

S6 None None

S7 {e, sx , sy , r2
z } D2

S8 {e, r2
z } Z2

S9 {e, rz, r2
z , r3

z } Z4

S10 {e, sd} Z2

Table 1. Symmetries contained in the steady flow patterns.

The cyclic group Z4 has four elements, {e, rz, r2
z , r3

z }, and is one of the subgroups
of D4. These simple groups will be used to construct the symmetry groups required
to describe the convection patterns.

In the present study, a total of ten steady flow patterns have been obtained above
the threshold of convection start up to Ra∗ = 1000. Nine of these steady flow patterns
have some symmetry while one is non-symmetric. Five of the flow patterns show
transient behaviour in some range of the Rayleigh number. Figure 2 shows the
steady flow patterns found in this study. Here, the projection of the flow lines on the
horizontal plane at Z = 0.9, the projection of the flow lines on the mid (x, z) and
mid (y, z)-planes are displayed. The projections of flow lines on a particular plane
are obtained from the in-plane components of the velocity vectors on that plane. The
distances between the arrows on each flow line are set to a constant value from a rake
position for aesthetic reasons only. The symmetries contained in each steady flow
pattern are given in table 1. The three-dimensional flow trajectories of the convective
patterns are displayed in figure 3. In three-dimensional flows, the flow trajectories are
not necessarily closed curves. As follows from this figure, a liquid particle can travel
from one convective roll to the other.

We illustrate the symmetry groups with reference to the convective patterns
displayed in figure 2. The diagonal single-roll structure S1 and structure S10 have
{e, sd} symmetry, so they are both in the Z2 group. The single-roll structure S2 is
two-dimensional. The orientation of the roll may be along the x or y direction and
both are named S2. This pattern is unchanged after reflecting in the x-direction and
after translating by any amount in the same direction, yielding the symmetry group
O(2) of a circle under rotations and reflections. That is, in this group the pattern is
unchanged under the reflection sx : (X, Y , Z, t) → (1 − X, Y , Z, t) and translation τx :
(X, Y , Z, t) → (X+λx , Y , Z, t). Similarly, the pattern consisting of two rolls in S4 have
O(2) symmetry about the y-axis and they are also unchanged after reflecting about
the X = 0.5 plane, so the symmetry group of S4 is Z2 × O(2). However, it should be
pointed out that the translational invariance of the two-dimensional roll structures S2
and S4 is not valid near the end faces, since the confining walls distort the flow lines
near the solid boundary. Structure S3 and S7 are both in the D2 symmetry group.
However, S3 have {e, sd , sd ′ , r2

z } symmetry while S7 have {e, sx , sy , r2
z } symmetry.

Structure S5 belong to the dihedral symmetry group D4, while structure S8 belong
to the rotational symmetry group {e, r2

z } = Z2. Structure S9 belong to the rotational
symmetry group Z4 = {e, rz, r2

z , r3
z }, while S6 is non-symmetric.
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Figure 2. For caption see next page.
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Figure 2. Steady-state convective patterns in the cubic cavity. (a) Projection of flow lines
on the horizontal plane at Z = 0.9; (b) projection of flow lines on the mid (x, z)-plane;
(c) projection of flow lines on the mid (y, z)-plane.
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Figure 3. Flow trajectories of the steady convective patterns.



402 I. Sezai

S1 (steady)

Upper bound

0 100 200 300 400

Ra*

500 600 700 800 900 1000

1

2

3

4

5

6

7

8

9

10

11

12

13

Nuave

S2 (steady)

S3 (steady)

S4 (steady)

S5 (steady)

S6 (steady)

S7 (steady)

S8 (steady)

S9 (steady)

S10 (steady)

S2 (unsteady)

S6 (unsteady)

S8 (unsteady)

S9 (unsteady)

S10 (unsteady)

Doering & Constantin 1998

Otero et al. 2004

Figure 4. Variation of average Nusselt number with Ra∗.

4.2. Effect of Rayleigh number

Figure 4 shows the variation of the average Nusselt number of the steady and
unsteady flow structures as a function of Ra∗. Unsteady convection is represented
by the values of the time-averaged Nusselt number. The transitions from one flow
structure to the other are shown by arrows. The transitions between the flow patterns
are depicted schematically in figure 5. Included in figure 4 are the theoretical upper
bounds for the Nusselt number derived by Doering & Constantin (1998) and Otero
et al. (2004), using the infinite Prandtl–Darcy limit which provides bounds within
which the predictions must lie. The upper bound is close to the numerical results near
the onset of convection, but it is about a factor of three above the simulation data at
the highest Rayleigh number.

The effect of the non-Darcy terms on the solution is tested by setting the Forcheimer
and Brinkman terms in (2) to zero for some selected cases of structures S3 and S7.
The resulting Darcy model overpredicts the flow velocities and heat transport at high
Rayleigh numbers, while the results between the two models are almost the same
for conditions close to the onset of convection. For example, the average Nusselt
number predicted by setting non-Darcy terms to zero is 2.0% higher at Ra∗ = 500
and this difference increases to 6.3% at Ra∗ = 800. However, the difference between
the two models is not restricted to predicting different Nusselt numbers. The two
models predict also a different range of existence of flow patterns and transition
paths between them.



Flow patterns in a fluid-saturated porous cube heated from below 403

S3
S4

S2

S1

200 400 600

Ra*

800 1000

S5

S7

S10
S6

S8

S9

Figure 5. Schematic diagram of the flow transitions as a function of Ra∗. Solid (dotted)
lines indicate steady (unsteady) solutions.

Starting from the motionless diffusive temperature profile as initial conditions, Ra∗

is increased in steps of 10, using the results from the previous run as input for the
next run. The flow structures found in the present study, their range of existence
and the bifurcating solutions are summarized in table 2, together with the structures
found in the previous studies. The results of the present investigation indicate that
convection begins at Ra∗ ≈ 41, where the diffusive state undergoes a supercritical
bifurcation to the two-dimensional single-roll structure S2. This value is close to the
critical Rayleigh number, 4π2, obtained by Beck using linear stability analysis.

Another single-roll structure is S1, but unlike S2 its axis of rotation is aligned along
a diagonal. Structure S1 is formed by the superposition of two horizontal orthogonal
two-dimensional rolls and is stable only in a rather small range of Nusselt number,
namely, 43 � Ra∗ � 46.

Steady, unicellular, two-dimensional convection cannot exist in a cube at porous
Rayleigh numbers larger than a value somewhat below 200 (Schubert & Straus 1979).
In the present study, as Ra∗ is increased from 180 to 190 the steady single-cell two-
dimensional convection pattern S2 undergoes a Hopf bifurcation to an oscillatory
state having a single frequency. No steady two-dimensional flow pattern was found
in this study for Ra∗ > 290.

The flow pattern S3, which was referred to as the (1, 1, 1) mode by Straus &
Schubert (1979) belongs to the symmetry group {e, sd , sd ′ , r2

z } = D2. As stated earlier,
Kimura et al. (1989) determined that the S3 mode becomes oscillatory at Ra∗ = 575.
In the present non-Darcy model, using no-slip boundary conditions on the enclosure
walls, no oscillatory behaviour of the S3 mode was detected. Instead, the S3 mode
was found to undergo a bifurcation to either S7 or S10 depending on the perturbation
given by the time-step value chosen in the simulation when Ra∗ is increased from 600
to 610.
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Range Structure Structure
reached upon reached upon

Structure Ra∗
min Ra∗

max decreasing Ra∗ increasing Ra∗

S1 43 46 S2 S2
Zebib & Kassoy 1978;
Horne 1979; Straus & Schubert 1981;
Schubert & Straus 1979

S2 41 190 Diffusive state S2(osc.), S4
Holst & Aziz 1972;
Zebib & Kassoy 1978; Schubert &
Straus 1979; Horne 1979

S2 (osc.) 190 410 S2 S6(osc.)
S3 50 600 S2 S7, S10(osc.)

Holst & Aziz 1972; Straus &
Schubert 1978, 1979, 1981;
Horne 1979; Steen 1983;
Kimura et al. 1989; Stamps et al.
1990; Graham & Steen 1991

S4 130 290 S2 S3
Straus & Schubert 1978

S5 260 680 S3 S7
S6 460 540 S6(osc.) S6(osc.)
S6(osc.) 410–420 470 S3 S6
S6∗(osc.) 540–550 1000 S6 S6(osc.)
S7 380 750 S3 S8
S8 700 900 S7 S8(osc.)
S8(osc.) 850–870 1000 S8 S8(osc.)
S9 710 900 S9(osc.) S9(osc.)
S9(osc.) 680 700 S5 S9
S9∗(osc.) 910 1000 S9 S9(osc.)
S10 530 570 S6 S10(osc.)
S10(osc.) 580 780 S10 S9

Table 2. Flow structures, their range of existence and structures reached after bifurcation.

The bifurcation from S3 to S10 is accompanied by a loss of one of the diagonal
symmetries. Upon increasing the Rayleigh number, S10 follows the route: steady
→ periodic → quasi-periodic → chaotic until Ra∗ = 780, where it bifurcates to
the steady-flow structure S9 having Z4 = {e, rz, r2

z , r3
z } symmetry. At the lower end

of the branch, structure S9 bifurcates to the steady-flow structure S5 having D4

symmetry. When Ra∗ is increased from 680 to 690, the steady flow structure S5
undergoes a pitchfork bifurcation to another steady structure S7 with symmetry
{e, sx , sy , r2

z }, where the diagonal symmetries are lost. It should be noted that the
average Nu values of S5 and S7 are equal for all Rayleigh numbers (figure 4).
Both structures bifurcate to S3 upon decreasing Ra∗ to low values. The similarities
between S5 and S7 are depicted in figure 6. The rectangular box in figure 6 consists
of two cubes with horizontal cross-sections JKFE and EFGH, each containing the
flow structure S7. However, the pattern bounded by ABCD is recognized to be
S5. Since each half of S5 is also shared by S7, then tiling of the flow pattern
in S5 is lagging that of S7 by a half width. As a result they have the same
Nusselt number as observed in figure 4, but have a different range of stabilities
(table 2).
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K B F C G 

J A E D H

Figure 6. Projection of flow lines on the horizontal plane at Z = 0.9 in a rectangular prism
constructed from two adjacent cubes.

Broken symmetries Resulting symmetry Resulting pattern

None {e, sx , sy , sd , sd ′ , rz, r2
z , r3

z } S5

sx , sy , sd , sd ′ {e, rz, r2
z , r3

z } S9

sx , sy , rz, r3
z {e, sd , sd ′ , r2

z } S3

sd , sd ′ , rz, r3
z {e, sx , sy , r2

z } S7

sy , sd , sd ′ , rz, r2
z , r3

z {e, sx} Not found

sy , sd , sd ′ , rz, r2
z , r3

z {e, sy} Not found

sx , sy , sd ′ , rz, r2
z , r3

z {e, sd} S1, S10

sx , sy , sd , rz, r2
z , r3

z {e, sd ′ } S1, S10

Table 3. Possible bifurcations from D4-symmetric flow structure S5.

The possible patterns that can generically arise through bifurcations from the four-
roll structure S5, whose symmetry group is D4 or {e, sx , sy , sd , sd ′ , rz, r

2
z , r

3
z }, are shown

in table 3. The patterns having symmetry {e, sd} or {e, sd ′ } are considered to be the
same in this work, as one is a 90◦-rotated version of the other and is assigned a single
name (e.g. S10). The patterns {e, sx}, {e, sy}, {e, sd} and {e, sd ′ } can also be reached
after pitchfork bifurcations from solutions with D2 symmetry. In the present study,
only S7 and S3 have been obtained through bifurcations directly from S5. All other
three-dimensional patterns were obtained through bifurcations from D2-symmetric
solutions (S3 and S7), which originated from the D4 solution. No two-dimensional
flow patterns were obtained through bifurcations from three-dimensional patterns.
In the study of Rucklidge et al. (2000), it has been shown that not all subgroups
of D4 are possible symmetry groups of bifurcating solutions: in particular, {e, r2

z } is
not an isotropy subgroup of any bifurcating solution. It can only appear after two
successive bifurcations from D4 symmetry. This is verified in the present study. For
example, the structure S8 with {e, r2

z } symmetry was obtained after two successive
bifurcations from the D4-symmetric solution S5; first to D2-symmetric structure S7
then from S7 to S8. Similarly, solutions lacking all symmetry are only attainable
after several bifurcations. For example, the non-symmetric flow structure S6 evolves
after the bifurcation sequence S5 (D4 symmetry) → S3 (D2 symmetry) → S10 (Z2

symmetry) → S6 (non-symmetric). Although the flow patterns with {e, sx} and {e, sy}
symmetry are possible subgroups of D4-symmetric structure S5, no flow patterns with
either symmetry were obtained in this study.
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The symmetries of the solution, which are due to the invariance properties of
the governing equations and the boundary conditions, are always restricted by the
symmetries of the bounding geometry. For example, in a cavity of a square horizontal
cross-section, heated from below and cooled from the top, the flow pattern with
the maximum number of symmetries will have all the symmetries of a square, or
the symmetries D4 = {e, sx , sy , sd , sd ′ , rz, r2

z , r3
z }. This structure is S5. Similarly, in a

cavity of a rectangular horizontal cross-section, the flow pattern, at most, can have
symmetries D2 = {e, sx , sy , r2

z } or the symmetries of a rectangle. This type of a flow
pattern will result if S5 is used as the initial profile and the x–y square cross-section
of the cube is changed into a rectangle by increasing Lx , while keeping Ly and Lz

constant. In that case, the flow pattern will be a deformed S5 in order to conform
to the bounding geometry. Then, the possible patterns that can generically arise
in a rectangular prism through bifurcations from the deformed form of S5, whose
symmetry group is D2 or {e, sx , sy , r2

z } are {e, r2
z }, {e, sx} and {e, sy}.

Bifurcations from an oscillatory state to another oscillatory structure are also
possible. For example, single-roll two-dimensional structure S2 follows the route:
steady → periodic → quasi-periodic → periodic and then bifurcates to the periodic
state of the non-symmetric structure S6. No steady-flow structures could be obtained
for Ra∗ > 900, where only S8 and S9 are found to reach this limit. In all previous
studies, the maximum Rayleigh number for steady-flow solutions in a cube have been
reported to be much lower. For example, Kimura et al. (1989) set the maximum value
of Ra∗ to be around 575 before oscillations begin. However, the flow pattern they
studied was S3 of which no oscillatory branch could be found in the present study.

Figure 7 displays the distribution of Nusselt number on the top and bottom walls of
the cubic cavity. In these plots, a maximum value of the Nusselt number corresponds
to a region of impingement of an ascending flow on the top plate or descending flow
on the bottom plate. Relatively low values of Nu correspond to stagnant regions of
boundary-layer flow for the fluid leaving the surface. Structures S3, S6, S7 and S8
have a common feature in that all have two counter-rotating rolls of which the axis of
rotation is not stationary, but rotates 90◦ in the horizontal plane as the fluid ascends
from bottom to top. This is reflected in the Nusselt-number distribution where the
line along which Nu is a minimum on the bottom plate, is rotated 90◦ on the top
plate.

5. Conclusions
In this paper, the evolution of the convection patterns in a fluid-saturated porous

cube heated from below is studied as a function of the Rayleigh number. The present
model uses a non-Darcy model and no-slip boundary conditions for velocities at the
rigid boundaries.

At low Ra∗ values, the results of the present model generally agree with previous
results found under the assumption of the Darcy law and zero shear stress at the solid
boundaries. However, for Ra∗ > 130, new flow patterns have been found to exist in
addition to those mentioned in the previous studies. No steady two-dimensional flow
pattern was found in this study for Ra∗ > 290. In the present study, a total of ten
steady flow patterns have been identified, of which five show oscillatory behaviour
in some Rayleigh-number range. However, the oscillatory convection of only pattern
S3 has been identified in all previous studies of three-dimensional convection in a
porous cube. In the present study, the S3 mode shows no oscillatory behaviour.
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Figure 7. For caption see next page.
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Figure 7. The distribution of the Nusselt number on (a) the top and (b) the bottom walls of
the cubic cavity.
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The steady-flow structure S3 is stable in a rather wide range of Rayleigh number
(50 � Ra∗ � 600). All other structures have a narrower range of stabilities.

Not all of the unsteady modes can exist at the highest Rayleigh number (Ra∗ =
1000) investigated. The oscillatory mode of the two-dimensional single-roll structure
S2 cannot exist for Rayleigh numbers greater than 400, where it bifurcates to the
oscillatory mode of the non-symmetric flow structure S6. Similarly, the oscillatory
mode of the Z2-symmetric flow structure S10, with symmetry {e, sd}, can exist only
up to Ra∗ = 780, where it bifurcates to the steady, Z4-symmetric structure S9.

From the possible patterns that can generically arise through bifurcations from
the four-roll structure S5, whose symmetry group is D4, all flow patterns except the
one with either {e, sx} or {e, sy} symmetry have been obtained in this study. Of
these possible bifurcating solutions, only S7 and S3 have been obtained through
bifurcations directly from S5. All other possible patterns were obtained through
pitchfork bifurcations from D2 symmetric solutions (S3 and S7), which originated
from the D4 solution. Structure S8 with {e, r2

z } symmetry was obtained after two
successive bifurcations from D4 symmetric solution S5; first to D2 symmetric structure
S7 then from S7 to S8. A similar observation was made by Rucklidge et al. (2000) for
magneto-convection in a square box with periodic lateral boundary conditions that
{e, r2

z } is not an isotropy subgroup of any bifurcating solution from D4 symmetry
and that it can only appear after two successive bifurcations from D4 symmetry.

Although the flow patterns with {e, sx} and {e, sy} symmetry are possible subgroups
of D4-symmetric structure S5, no flow patterns with either symmetry was obtained in
this study.

Also, no two-dimensional flow patterns were obtained through bifurcations from
three-dimensional patterns.

The maximum Rayleigh number for obtaining steady solutions is found to be 900,
where only S8 and S9 are found to reach this limit. In all previous studies, the
maximum Rayleigh number for steady-flow solutions in a cube have been reported
to be much lower. For example, Kimura et al. (1989) set the maximum value of Ra∗

to be around 575 before oscillations begin. However, they used stress-free boundary
conditions at rigid walls and the flow pattern they studied was S3, of which no
oscillatory branch could be found in the present study.
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